宇宙空間プラズマ環境の研究

- 宇宙空間プラズマ現象の実験室実験
- 観測ロケットによる宇宙テザー実験
- スペースシャトルによる電子ビーム放射実験
- Space Flyer Unit(SFU)による飛翔体環境科学の研究

2012年3月

宇宙空間プラズマ物理/実験室実験

波動粒子相互作用の研究(マイクロ波などの波動による粒子加熱、粒子ビームによるプラズマ波動の励起)

実験室実験は自らの手でエ夫しながら、次々と未知の現象を解明していくという独 特の面白さ

宇宙空間プラズマ物理/観測ロケット実験

宇宙空間を巨大なプラズマ物理実験室として 利用ーロケットによるエレクトロダイナミックテ ザー実験

観測ロケットK-10-11、K-10-12, L-3H-8, K-9M-46, K-9M-51, K-9M-57, K-9M-69, S-520-2,

Black-Brant V(1), Black-Brant V(2)

不思議な波動現象時間(秒/div)

低周波帯のプラズマ波動の励起 イオンの運動が低域混成波(Lower Hybrid Resonance Wave)の励起

外国の研究者との共同作業の難 しさと楽しさ

1983年当時世界最長(400m)を記録したテザーワイヤー伸展実験 Airglow

宇宙空間を巨大なプラズマ物理実験室として利用一粒子ビームを用いた 宇宙科学実験(Space Experiments with Particle Accelerators)

スペースシャトル9号機スペースラブ1に電子 ビーム装置、プラズマ加速器、計測器パッケージ、 低照度TVカメラを搭載

目的

(1)飛翔体帯電と中和の研究 (2)ビームプラズマ相互作用の研究 (3)ビーム大気相互作用の研究(人工オーロラ)

宇宙研とNASAの共同研究(初めての大型の日 米共同宇宙科学実験)

PI:大林辰蔵先生

1978年スタート、1983年実験実施、1992年フォ ローオン実験終了

日本側装置
(1)電子ビーム加速器: 7.5kV, 1.6 A,
10ms~1sec
(2)MPDアークジェット(プラズマ加速器): 2kJ/pulse, 1ms, アルゴンガス作動
(3)中性ガス放射装置: 窒素ガス作動
(4)観測機器: 低照度TVカメラ, フォトメーター, 電子エネルギー分析器, プラズマプローブ, 波動受信機

米国側装置 (1)クルー用コントロールパネル (2) 実験コンピュータとインターフェイ スユニット

日本側チーム: 大林辰蔵 (ISAS), 河島信樹(ISAS) 栗木恭一(ISAS), 長友信人(ISAS) 二宮敬虔 (ISAS), 江尻全機(ISAS,NIPR) 佐々木進(ISAS), 柳澤正久(ISAS) 矢守章(ISAS), 清水幸夫(ISAS) 工藤勲(ETL)

米国側チーム: W.T.Roberts (MSFC), C.R.Chappell (MSFC) D.L.Resoner(MSFC), J.Burch(SWRI) W.L.Taylor(TRW), P.M.Banks (Stanford Univ.) P.R.Williamson (Stanford Univ.), O.K.Garriott(JSC)

1983年打上

3シフトでの日米混成チームによる運用

帯電ースペースシャトルがキロボルトまで帯電した!

帯電電圧が計測され、帯電中和装置(プラ ズマ放射、中性ガス放射装置)を動作しな い限りオービターはビームの電圧付近まで 帯電した。

帯電中和一ガスやプラズマ放射により帯電が予定通り中和した

プラズマ放射にともなう飛翔体の帯電中和現象が初めて 明確に示された。

GMT 335/7 : 28 : 30

ビームプラズマ放電現象が宇宙空間で実証された

壁のない宇宙空間でビームプラズマ放電現象が初めて検証された。

BPD in Laboratory

BPD in space

臨界速度放電現象が宇宙空間で実証された

ガス放射時の現象

Alfvenの臨界速度放電現象: 磁場中を中性ガスが高速で流れると き運動エネルギーが電離ポテンシャ ルと等しくなるとき自己電離する。

Experiment	Year	Increase Ionization
SEPAC	1983	yes
XANI	1989	yes
STS 39	1991	no
ATLAS 1	1992	yes
APEX	1993	yes
North Star	2000	yes
ARGOS	2000 and 2001	no

宇宙空間での臨界速度放電現象の検証

SEPAC 実験の宇宙科学・宇宙開発への貢献

- 1. 宇宙プラズマ物理上新しい発見と驚きがあった。特に粒子・波動相互作用や 宇宙帯電現象など。
- 宇宙能動実験(Active Experiments) の分野の研究を切り開いた。その後 スペースシャトルによる20km級テ ザー実験、衛星によるガス雲放射実 験、などの先がけとなった。
- 3. 最初の大型の国際協力の宇宙科学 実験として、科学者、技術者を育て た。メーカーの技術者の方を含め参 加した多くのメンバーがその後の日 米の宇宙科学、宇宙開発の場で活 躍した。

SEPAC実験の感慨、教訓

- 電子銃が不具合を起こし最大出力の実験(人 エオーロラの生成)はできなかった。全体とし て科学成果は挙げたが、新聞や政府筋から非 常に厳しい批判を受けた。⇒是非は別として、 大型計画に対する日本の社会の見る目は厳 しい(米国での反応と比較して)。
- 最大出力での人工オーロラ生成を目指したリ フライト実験は、その後チャレンジャー事故の 影響により、9年後の1992年に実施され成功し たが、科学成果として大きく注目されることは なかった。⇔科学研究にもタイミング(句)があ る。

たかがナット、されどナット――1回目の失敗

いろいろと幸運も重なり、大林の実験計画はいわゆるアクティ プ実験として、スペースラブの最初の飛行で行われることに なった。日本側は主要機器である電子ビームとプラズマの加速 器および観測機器を開発し、米国側はスペースラブ搭載用管制 装置とソフトウエアを担当した。大林からその装置を開発する 日米合同チームのプロジェクトエンジニアに任命されたのが、 長友信人だった。

ただしそれからが大変だった。アメリカ人同士でも言いたいこ とは表現を変えて3回は繰り返さなければならないような複雑 なシステムの中で、会話そのものをスピーディに出来ない日本 人チームは随分と苦労を重ねた。しかしアメリカ側の辛抱強さ にも大いに助けられ、最終的には大切なことはもれなくコミュ ニケーションができ、日本人チームは最終的にはスペースラブ の搭乗科学者の副練計画まで作成し、参加した宇宙飛行士たち が評価表に賛辞を書き連ねるほどの実施計画が完成した。

SEPACのオーロラ生成実験イメージ実

スペースラブ1号の飛行は遅れに遅れた。その間、東京大学宇 歯航空研究所は1981年に文部省宇宙科学研究所になり、世の 中で宇宙ステーションが話題になり始めた1983年11月、 SEPACはSTS-9に搭載されて打ち上げられた。SEPACが軌道 上の最初のチェックアウトを無事にバスしたとき、長友は救わ れた気持ちでジョンソン宇宙センターの管制室から解放され、 宇宙ステーションのワークショップが開かれるワシントンDC に移動した。

ホテルの部屋で、テレビに映し出されるスペースラブの様子を 見つめていた長友は、画面が時々明るくなるのを見て、「あ、 これはMPDアークジェットの光だな。いいぞ、いいぞ」と思い つつも、電子ビームが出てくる様子がないので、「電子ビーム はテレビには映りにくいのだ」と勝手に判断していた。まさか その時すでに電子銃の電源が故障していたことは知る由もな かったのである。

シャトルが地球に帰還して、電源の中にナットが1個見つかっ た。これが宇宙で浮遊して悪さをしてフューズがとび、人工 オーロラの生成を含む高エネルギーの実験は実施できなかった のである。実験は失敗と評価され、計画は事実上打ち切りと なった。

SEPAC実験装置配置図

SEPAC実験装置

宇宙開発の歴史(宇宙研物語)

Space Experiments with Particle Accelerators

Edited by Nobuki Kawashima

Natural Aurora

飛翔体環境科学の研究

人類が宇宙に出て行くとき、飛翔体周辺にどのような環境が形成されるのか? 宇宙機や搭乗員にどのような影響をあたえるのか(宇宙植民地にはどのような周辺環境 が形成され居住者はどのような環境に住むことになるのか)。 SIE(Spacecraft Induced Environment)という新語を作った。(Space whetherという新語も米 国で生まれかけていた)。

国際協力による宇宙基地の周辺環境研究計画(PIMS計画)・・・実現されず(一部JEMで 実現)

SFU (Space Flyer Unit)を用いた小型宇宙プラットッフォームの環境研究・・・実現

飛翔体環境計測システム

バス系観測装置

バス系観測装置 電離真空計(方向を変えて2ヶ) ピラニゲージ4セット分散 質量分析器 プラズマプローブ(センサーは4ヶ所) フローティングプローブ インピーダンスプローブ 波動受信機(VLF帯、HF帯の2帯域) マイクロGメーター(3軸)4セット分散 曝露材料劣化試料(回収後分析)

ミッション系観測装置

分光器+材料劣化試料(実時間分析) 曝露材料劣化試料(回収後分析) 磁力計 電子密度変動計測器

共同研究者:佐川先生(通総研)、賀谷先生(神戸大)、横田先生(愛媛大)、大田先生(都立 大)、遠山先生(東海大)、渡辺勇三さん(宇宙研)

SFU環境計測で解明された主な新しい結果

電位変動

電磁環境

マイクロG環境

太陽電池パネルを持つ衛星の電位は、 周辺プラズマとの作用により、太陽電 池起電力により決定されることを示し た。

衛星表面の真空度は、軌道投入半年 程度までは、表面からのアウトガスが 支配的。主成分は水。

大型衛星衛星周辺には、飛翔体が形 成する周囲のプラズマ密度勾配に基 づくと思われる低周波のブロードバン ドノイズが常時存在する。

無人の小型宇宙プラットフォームの μG環境は宇宙基地よりはるかに良い。 ただし構造の特性周波数は常時残存。