Space Transportation System Required for SPS Construction

Background
SPS Study Model
SPS Construction Scenario
Requirements for Reusable Launch/Vehicle
Requirements for Orbit Transfer Vehicle
Phased Requirements towards Commercial SPS

April 2014

Background

 Space transportation is one of the crucial issues to realize SPS.

 However, the space transportation system for SPS has not been well defined, except for the cost requirement to be reduced to 1/100-1/50 of its current level.

 Actually, the space transportation community has no specific information on the design and operation requirements for SPS construction, even though recognizing SPS as a potential customer in their roadmap.

Long-term Vision for Space Transportation System (Draft) Office of National Space Policy (Dec.2013)

Space transportation community recognizes SPS as one of their future missions, but SPS requirements on space transportation are not well specified yet

A Study Model for Space Transportation -Tethered SPS-

Two Major Construction Scenarios

Trade-off Study between GEO and LEO Construction

Total Mass (One SPS)	20,000 Mtons			
Construction Period	<i>One year(construction)</i> + Three months(LEO-GEO transportation)			
Construction Orbit	GEO	LEO		
OTV Cargo	50 Mtons	20,000 Mtons		
OTV System	100N class thruster x 200 (three times per year))	40,000N class thruster (once per year)		
<i>Attitude Control and Orbit Maintenance during Construction</i>	<i>Lower gravity force No drag force</i>	Higher Gravity force Drag force		
Transportation and Construction	Higher robustness, consisting of individual events	Lower robustness, consisting of sequential events		
<i>System Verification during Integration</i>	<i>Transmission test is not possible in the early phase.</i>	<i>Transmission test is possible from the early phase.</i>		
Manned Construction	Difficult	Possible		

Preferable

Advantage

GEO Construction Scenario for Tethered SPS

Requirements for Space Transportation

Operation/Construction orbit	Geosynchronous Orbit	
SPS class	1GW	SPS Unit
Total weight	26700 Mtons (Latest Model)	1
Construction/replacement	1 year	
Payload mass	50 Mtons ,1 SPS unit ———	► 5~10km
Reusable Launch Vehicle	50 Mtons payload capability	100m
(RLV)	Ground to LEO (500km)	
	50 Mtons payload capability	
Orbit Transfer Vehicle (OTV)	LEO to GEO	
	4 months round trip	

Importance of LEO Transportation Cost Power Cost vs Launch Cost (LEO)

	NASA Reference Model	NEDO 1993 Model JAXA 2003 Model		USEF 2002 Baseline Model
Mass	50,000 Mtons 20,000 Mtor		10,000 Mtons	26,600 Mtons
Power	5GW	1GW	1GW	1GW
Cost	26500 M\$ (1996\$)	23610 M\$	12929 M\$	17081 M\$
Life	30 years	30 years	<i>30 years</i>	40 years
Transportation cost	n cost 32.8% (G to LEO \$100/kg, LEO to GSO\$30/kg) GSO 25\$/kg)		2,795 M\$ (G to LEO 170\$/kg、 LEO to GSO 10\$/kg)	7,785 M\$ (G to LEO 100\$/kg, LEO to GSO 175\$/kg)
Transportation Cost Ratio	33%	31%	22%	46%
Power Cost	ver Cost 8.5¢/kWh 23¢/kWh		8.9¢/kWh	13.4¢/kWh
G to LEO 10K\$/kg	2.2\$/kWH	279¢/kWH	112¢/kWh	257¢/kWh
G to LEO 5K\$/kg	1.14\$/kWH	148¢/kWh	60¢/kWh	134¢/kWh
G to LEO 1K\$/kg	LEO 1K\$/kg 28¢/kWh 42¢/kWh		18¢/kWh	35¢/kWh

* Assuming that all construction cost targets are achieved except for LEO transportation cost.

Space Transportation to LEO - Current technology level and target level for SPS -

	Current	SPS Target
Cargo Weight	30 Mton	50 Mton
Cargo Flow to Space	Several hundreds Mtons/year	10,000 Mtons/year
Transportation Cost (Ground to LEO)	5-10 k\$/kg	Several 100 \$/kg
Launch Vehicle	Expendable	Reusable

Falcon Heavy

Commercial, low cost, heavy weight lifting

LEO Transportation Cost (LEO)

Cargo Flow

LEO Transportation Cost vs Annual Payload Mass

ina-lab.isas.jaxa.jp/documents/the_next_goal_for_rockets.pdf

Electric Propulsion for Orbit Transfer Vehicle -Current technology level and target level for SPS -

OTV Transportation Time from LEO to GEO

Payload: 50 tons, Specific Impulse: 3000 sec, Working Gas: Argon, Power Specific Mass: 10kg/kW, Thruster Specific Mass: 2kg/kW

Transportation time longer than 60 days is desirable, considering the initial weight (fuel).

OTV Capabilities Required for SPS Construction

	Capabilities and Requirements	Note	
Cargo	A unit of tethered SPS, fuel, and miscellaneous items	A unit of SPS consists of sandwich panel and bus system Fuel is for SPS orbit maintenance and construction robots.	
Cargo Weight	50 Mtons	45 Mtons (unit) and 5 tons (miscellaneous)	
Cargo Volume	10mx5mx4m		
Operation Time	4 months	Round trip between LEO and GEO	
Shield Container	less than 10 krad inside container	Requirement from photovoltaic cells	
ManipulatorTransshipment from launcher to OTVManipulatorat LEOUnloading and loading at GEO		Loading and unloading of cargo Construction support	
Optional Function	Deployment of SPS unit Thrusting for SPS orbit maintenance		

OTV System (example)

Total Weight:182.2 tons, Structure:50 tons, Fuel:37.6 tons, Thruster:4.3 tons, Power Generation System: 21.5 tons, Payload:50 tons, Thrust 118.4N, Electric Power: 2150 KW, Round trip(LEO/GEO):118 days

Requirements of RLV and OTV

Construction	every year (steady construction)		
Payload mass	50 Mton (1 SPS unit)		
	Ground to LEO (500km) 15 RLVs		
Reusable Launch Vehicle (RLV)	Turn around 5 days		
	2.83 launch/day		
	1000 launch life		
	1 RLV manufacturing/year		
	LEO to GEO		
Orbit Transfer Vehicle (OTV)	206 OTVs ^{Image}	• →	
	4 months round trip		
	1000 round trip life		
	0.6 OTV manufacturing/year		

Ferris wheel

Development Roadmap towards Commercial SPS

Commercial SSPS (1SSPS/year)

Space Transportation Required for SPS Development

Phase	Small scale demonstration	Large scale demonstration	Small plant	Large plant	First commercial model	Commercial
Target year	~2017	~2020	~2025	~2030	~2035	2035~
Orbit	LEO	LEO	1000 km	GEO	GEO	GEO
Power level	1~5kW	100 kW	2 MW	200 MW	1 GW	1 GW
System weight	500 kg	15 Mtons	42.5 Mtons	5300 Mtons	26600 Mtons	26600 tons
Construction	NA	NA	6 months	3 years	5 years	1 year
Payload weight	500 kg	15 Mtons	10 Mtons	50 Mtons	50 Mtons	50 tons
Launch vehicle	Small ELV LEO	Large ELV LEO	1 RLV 1000km 5 Round trips 1 launch/month	1 RLV 500 km 207 round trips 1 launch/5 days 5 days turn around	3 RLV 500 km 345 round trips 1 launch/2 days 5 days turn around	15 RLV 500 km 69 round trips 2.8 launch per day 5 days turn around
Orbit transfer vehicle	NA	NA	NA	14 OTV 500 km-GEO 9 round trips*	42 OTV 500 km-GEO 15 round trips*	206 OTV 500 km-GEO 3 round trips*

Epsilon Launch Vehicle H-II Launch Vehicle

4

*:fuel 38 tons for a round trip

Reusable Sounding OTV(Image) Rocket

Summary and Conclusion

Based on the current SPS model (Tethered SPS/ Basic Model), the requirements on the RLV and **OTV** are defined. •50 Mtons cargo capability and 5 days turn around time are required for RLV, and 50 Mtons cargo capability and 4 months round trip are required for OTV. •RTV is required early 2020's and OTV is required around 2025 for the SPS plant level verification.