Space Transportation System Required for SPS Construction

- Background
- SPS Study Model
- SP'S Construction Scenario
- Requirements for Reveable Manch/ ehicle
- Requirements.for Orbit I sfer Va nicle
- Phased Requirements to ards C mmercial SPS

April: 2014
space iransportation is one of the crucial issues to realize SPS.
-However, the space transportation system for SPS has not been well defined, except for the cost requirement to be reduced to 1/100-1/50 of its current level.
-Actually, the space transporlation community has no specific information on the design and -operation requirements for SPS construction, seven though recognizingesPS as a potential

Long-term Vision for Space Transportation System (Draft) Office of National Space Policy (Dec.2013)

A Study Moe for Space Transportation -Tethered SPS-

Two Major Construction Scenarios

Geosynchronous Orbit

Low Earth Orbit

Trade-off Study between GEO and LEO Construction

Total Mass (One SPS)	20,000 Mtons	
Construction Period	One year(construction) +Three months(LEO-GEO transportation)	
Construction Orbit	GEO	LEO
OTV Cargo	50 Mtons	20,000 Mtons
OTV System	100N class thruster x 200 (three times per year))	$40,000 \mathrm{~N}$ class thruster (once per year)
Attitude Control and Orbit Maintenance during Construction	Lower gravity force No drag force	Higher Gravity force Drag force
Transportation and Construction	Higher robustness, consisting of individual events	Lower robustness, consisting of sequential events
System Verification during Integration	Transmission test is not possible in the early phase.	Transmission test is possible from the early phase.
Manned Construction	Difficult	Possible

GEO Construction Scenario for Tethered SPS

Requirements for Space Transportation

Operation/Construction orbit	Geosynchronous Orbit
SPS class	1 GW
Total weight	26700 Mtons (Latest Model)
Construction/replacement	1 year
Payload mass	50 Mtons ,1 SPS unit -
Reusable Launch Vehicle (RLV)	50 Mtons payload capability Ground to LEO (500km)
Orbit Transfer Vehicle (OTV)	50 Mtons payload capability LEO to GEO 4 months round trip

Importance of LEO Transportation Cost Power Cost vs Launch Cost (LEO)

		NASA Reference Model	NEDO 1993 Model	JAXA 2003 Model	USEF 2002 Baseline Model
	Mass	50,000 Mtons	20,000 Mtons	10,000 Mtons	26,600 Mtons
	Power	5GW	1GW	1GW	1GW
	Cost	$\begin{gathered} 26500 M \$ \\ (1996 \$) \end{gathered}$	23610 M\$	12929 M\$	17081 M\$
	Life	30 years	30 years	30 years	40 years
	Transportation cost	$\begin{aligned} & 32.8 \% \text { (G to LEO } \\ & \$ 100 / \mathrm{kg}, \text { LEO to } \\ & G S O \$ 30 / \mathrm{kg}) \end{aligned}$	$\begin{aligned} & 7,250 \mathrm{M} \$(\mathrm{G} \text { to } L E O \\ & 250 \$ / \mathrm{kg}, L E O \text { to } \\ & G S O \quad 25 \$ / \mathrm{kg}) \end{aligned}$	$\begin{aligned} & \text { 2,795 M\$ (G to } \\ & \text { LEO } 170 \$ / \mathrm{kg}, \\ & \text { LEO to GSO } \\ & 10 \$ / \mathrm{kg}) \end{aligned}$	7,785 M\$ (G to LEO $100 \$ / \mathrm{kg}$, LEO to GSO $175 \$ / \mathrm{kg}$)
	Transportation Cost Ratio	33\%	31\%	22\%	46\%
	Power Cost	8.54/kWh	23\$/kWh	8.94/kWh	13.4 $/$ /kWh
	G to LEO 10K\$/kg	2.2\$/kWH	279 //kWH	112¢/kWh	257¢/kWh
*	G to LEO $5 K \$ / \mathrm{kg}$	1.14\$/kWH	1484/kWh	60¢/kWh	134¢/kWh
L	G to LEO $1 \mathrm{~K} \$ / \mathrm{kg}$	284/kWh	42¢/kWh	184/kWh	354/kWh

* Assuming that all construction cost targets are achieved except for LEO transportation cost.

Space Transportation to LEO
 - Current technology level and target level for SPS -

	Current	SPS Target
Cargo Weight	30 Mton	50 Mton
Cargo Flow to Space	Several hundreds Mtons/year	10,000 Mtons/year
Transportation Cost (Ground to LEO)	$5-10 \mathrm{k} \$ / \mathrm{kg}$	Several $100 \$ / \mathrm{kg}$
Launch Vehicle	Expendable	Reusable

Falcon Heavy
Commercial, low cost, heavy weight lifting

LEO Transportation Cost (LEO)

JAXA/ISAS RTV Reusable vehicle testing

Cargo Flow

LEO Transportation Cost vs Annual Payload Mass

ina-lab.isas.jaxa.jp/documents/the_next_goal_for_rockets.pdf

Electric Propulsion for Orbit Transfer Vehicle -Current technology level and target level for SPS -

	Current	SPS Target
Cargo Weight	Several Mtons (orbit maintenance, GTO/GEO transition, planetary exploration)	50 Mton
Cargo Flow	Several Mtons/year	10,000 Mtons/year
Thrust Level	100 mNLevel	100 N Level
Transportation Cost (LEO to GEO)	No specific data	$50-100 \$ / \mathrm{kg}$

Development History of Electric Propulsion (Kuninaka, 2011)

OTV Transportation Time from LEO to GEO

Payload: 50 tons,Specific Impulse:3000 sec, Working Gas: Argon, Power Specific Mass:10kg/kW, Thruster Specific Mass:2kg/kW

Transportation time longer than 60 days is desirable, considering the initial weight (fuel).

OTV Capabilities Required for SPS Construction

	Capabilities and Requirements	Note
Cargo	A unit of tethered SPS, fuel, and miscellaneous items	A unit of SPS consists of sandwich panel and bus system Fuel is for SPS orbit maintenance and construction robots.
Cargo Weight	50 Mtons	45 Mtons (unit) and 5 tons (miscellaneous)
Cargo Volume	$10 m x 5 m x 4 m$	Round trip between LEO and GEO
Operation Time	4 months	Requirement from photovoltaic cells
Shield Container	less than 10 krad inside container	Loading and unloading of cargo Construction support
Manipulator	Transshipment from launcher to OTV at LEO Unloading and loading at GEO	Deployment of SPS unit Thrusting for SPS orbit maintenance
Optional Function	Coner	

OTV System (example)
Total Weight:182.2 tons, Structure:50 tons, Fuel:37.6 tons, Thruster:4.3 tons, Power Generation System: 21.5 tons, Payload:50 tons, Thrust 118.4N, Electric Power: 2150 KW, Round trip(LEO/GEO) : 118 days

Requirements of RLV and OTV

Construction	every year (steady construction)	Ferris wheel
Payload mass	50 Mton (1 SPS unit)	
Reusable Launch Vehicle (RLV)	Ground to LEO (500km) 15 RLVs Turn around 5 days 2.83 launch/day 1000 launch life 1 RLV manufacturing/year	
Orbit Transfer Vehicle (OTV)	$\begin{array}{\|l} \hline \text { LEO to GEO } \\ 206 \text { OTV _- - - Image _ } \\ 4 \text { months round trip } \\ 1000 \text { round trip life } \\ 0.6 \text { OTV manufacturing/year } \end{array}$	

Development Roadmap towards Commercial SPS

Research Phase

Development Phase

21	22	23	24	25	26	27	28	29	30
2MW class demonstration									

Commercial Phase

200MW class plant

Space Transportation Required for SPS Development

Phase	Small scale demonstration	Large scale demonstration	Small plant	Large plant	First commercial model	Commercial
Target year	~ 2017	~2020	~ 2025	~2030	~2035	2035~
Orbit	LEO	LEO	1000 km	GEO	GEO	GEO
Power level	1~5kW	100 kW	2 MW	200 MW	1 GW	1 GW
System weight	500 kg	15 Mtons	42.5 Mtons	5300 Mtons	26600 Mtons	26600 tons
Construction	$N A$	$N A$	6 months	3 years	5 years	1 year
Payload weight	500 kg	15 Mtons	10 Mtons	50 Mtons	50 Mtons	50 tons
Launch vehicle	$\begin{gathered} \text { Small ELV } \\ \text { LEO } \end{gathered}$	$\begin{gathered} \text { Large ELV } \\ \text { LEO } \end{gathered}$	1 RLV 1000km 5 Round trips 1 launch/month	1 RLV 500 km 207 round trips 1 launch/5 days 5 days turn around	3 RLV 500 km 345 round trips 1 launch/2 days 5 days turn around	15 RLV 500 km 69 round trips 2.8 launch per day 5 days turn around
Orbit transfer vehicle	$N A$	$N A$	$N A$	$\begin{aligned} & 14 \text { OTV } \\ & 500 \text { km-GEO } \\ & 9 \text { round trips* } \end{aligned}$	$\begin{aligned} & 42 \text { OTV } \\ & 500 \text { km-GEO } \\ & 15 \text { round trips* } \end{aligned}$	$\begin{gathered} 206 \text { OTV } \\ 500 \text { km-GEO } \\ 3 \text { round trips* } \end{gathered}$

Reusable Sounding OTV(Image)
Rocket
*:fuel 38 tons for a round trip

Summary and Conclusion

-Based on the current SPS model (Tethered SPS/ Basic Model), the requirements on the RLVIId OTV are defined.

- 50 Mtons cargo capability and 5 dal s turn around time are required for RLV he 50 Mitons cargo capability and 4 months ry who tho are required for OTV.
-RTV is required early 2020's an OTV i s required around 2025 for the SPS plant level verification.

